- www.mymathscloud.com B1 Establish result true for n = 1 or n = 2Add next term to given sum formula M1 M1 Attempt to factorise or expand and simplify to correct expression Correct expression obtained A1 Specific statement of induction A1 5 conclusion 5 M1 Obtain a single value 2 Obtain correct answer as a matrix A1
 - M1 Obtain a 2×2 matrix
 - A1 All elements correct
 - B1 4C seen or implied by correct answer
 - B1ft 4 Obtain correct answer, ft for a slip in **BA**

6

M1 Express as a sum of 3 terms Use standard sum results M1 Correct unsimplified answer A1 Attempt to factorise M1 Obtain at least factor of *n* and a A1 quadratic Obtain correct answer a.e.f. A1 6 Express as difference of 2 $\sum r^2$ series M1 Use standard result M1 Correct unsimplified answer A1 Attempt to factorise M1 Obtain at least factor of n A1 Obtain correct answer A1

(ii)
$$BA = \begin{pmatrix} 5 & -20 \\ 3 & -12 \end{pmatrix}$$

 $\begin{pmatrix} -7 & -20 \\ 11 & -20 \end{pmatrix}$

Either

(-7)

3

1

2

(i)

$$\frac{2}{3}n(n+1)(2n+1) - 2n(n+1) + n$$

$$\frac{\frac{1}{3}n(2n-1)(2n+1)}{Or}$$

$$\sum_{r=1}^{2n}r^2 - 4\sum_{r=1}^{n}r^2$$

$$\frac{1}{6} \times 2n(2n+1)(4n+1) - 4 \times \frac{1}{6}n(n+1)(2n+1)$$

$$\frac{1}{3}n(2n-1)(2n+1)$$

4	(i)	5 + 12i 13 67.4° or 1.18	B1B1 B1ft B1ft 4		Www.mymaths Correct real and imaginary parts Correct modulus Correct argument
	(ii)	$-\frac{11}{85}-\frac{27}{85}$ i	M1 A1 A1 3	3	Multiply by conjugate Obtain correct numerator Obtain correct denominator
5	(a)	$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$	B1B1	2	Each column correct SC B2 use correct matrix from MF1 Can be trig form
	(b)	(i) (ii)	B1B12 B1B12		
6	(i)	(a) (b)	B1B12 B1B12		Circle centre $(3, -4)$, through origin Vertical line, clearly $x = 3$
	(ii)		B1ft B1ft 1	2	Inside their circle And to right of their line, if vertical

Either $\alpha + \beta = -2k \quad \alpha\beta = k$

7

 $y^2 - 4ky + 4k = 0$

 $\alpha + \beta = -2k$ $\frac{-2k}{\alpha}$ $y = \frac{-2k}{x}$

 $y^2 - 4ky + 4k = 0$

0r

$$-k \pm \sqrt{k^2 - k}$$
$$\frac{\alpha + \beta}{\alpha} = \frac{2k}{k + \sqrt{k^2 - k}}, \frac{\alpha + \beta}{\beta} = \frac{2k}{k - \sqrt{k^2 - k}}$$

$$y^2 - 4ky + 4k = 0$$

B1B1State or use correct resultsM1Attempt to find sum of new rootsA1Obtain 4kM1Attempt to find product of new rootsA1Obtain 4kB1ft 7Correct quadratic equation a.e.f.

- B1 State or use correct result
 B1 State or imply form of new roots
 B1 State correct substitution
 M1 Rearrange and substitute for x
 A1 Correct unsimplified equation
 M1 Attempt to clear fractions
 A1 Correct quadratic equation a.e.f.
- B1 Find roots of original equation
- B1 Express both new roots in terms of k
- M1 Attempt to find sum of new roots
- A1 Obtain 4k

7

- M1 Attempt to find product of new roots
- A1 Obtain 4k
- B1ft Correct quadratic equation a.e.f.

4725		Mark Scheme		June June
(i)		M1		Attempt to rationalise denominator or cross multiply Obtain given answer correctly
		A1	2	cross multiply Obtain given answer correctly
(ii)		M1 M1		Express terms as differences using (i) Attempt this for at least 1 st three terms
		A1		1^{st} three terms all correct
		A1		Last two terms all correct
	$\frac{1}{2}(\sqrt{n+2} + \sqrt{n+1} - \sqrt{2} - 1)$	M1	6	Show pairs cancelling
	2	A1	6	Obtain correct answer, in terms of <i>n</i>
(iii))	B1	1	Sensible statement for divergence
			9	
(i)		M1		Show correct expansion process for 3 x 3
		M1	2	Correct evaluation of any 2 x 2
	$\det \mathbf{A} = a^2 - a$	A1	3	Obtain correct answer
(ii)	(a)	M1		Find a pair of inconsistent
				equations
		A1 M1		State inconsistent or no solutions
	(b)	A1		Find a repeated equation State non unique solutions
	(c)	B1		State that det A is non-zero or find correc
				solution
		B1	6	State unique solution SC if detA incorrect, can score 2 marks
				for correct deduction of a unique
			9	solution, but only once
(i)		M1		Attempt to equate real and imaginary
(-)				parts
	$x^2 - y^2 = 3 xy = 2$	A1		Obtain both results Eliminate to obtain and rest in $x^2 = x^2$
		M1		Eliminate to obtain quadratic in x^2 or y^2 Solve to obtain x or y value
		N/1		-
	z = 2 + i	M1 A1	5	Obtain correct answer as a complex no.
	<i>z</i> = 2 + i	M1 A1	5	Obtain correct answer as a complex no.
(ii)		A1 B1	1	Obtain given answer correctly
(ii) (iii)	,	A1 B1	1	Obtain given answer correctly Attempt to solve quadratic equation
		A1 B1 M1 A1	1	Obtain given answer correctly Attempt to solve quadratic equation Obtain correct answers
	,	A1 B1 M1 A1 M1	1	Obtain given answer correctly Attempt to solve quadratic equation Obtain correct answers Choose negative sign
	,	A1 B1 M1 A1	1	Obtain given answer correctly Attempt to solve quadratic equation Obtain correct answers