B1 Establish result true for $n=1$ or $n=2$
M1 Add next term to given sum formula
M1 Attempt to factorise or expand and simplify to correct expression
A1 Correct expression obtained
A1 5 Specific statement of induction conclusion

5

$2 \quad$ (i) (-7)
M1 Obtain a single value
A1 2 Obtain correct answer as a matrix
(ii) $\quad \mathrm{BA}=\left(\begin{array}{ll}5 & -20 \\ 3 & -12\end{array}\right)$ $\left(\begin{array}{cc}-7 & -20 \\ 11 & -20\end{array}\right)$

M1 \quad Obtain a 2×2 matrix

A1 All elements correct

B1 4C seen or implied by correct answer
B1ft 4 Obtain correct answer, ft for a slip in BA

3	Either
	$\frac{2}{3} n(n+1)(2 n+1)-2 n(n+1)+n$
	$\frac{1}{3} n(2 n-1)(2 n+1)$
	Or
	$\sum_{r=1}^{2 n} r^{2}-4 \sum_{r=1}^{n} r^{2}$
	$\frac{1}{6} \times 2 n(2 n+1)(4 n+1)-4 \times \frac{1}{6} n(n+1)(2 n+1)$
	$\frac{1}{3} n(2 n-1)(2 n+1)$

M1 Attempt to factorise
A1 Obtain at least factor of n and a quadratic

A1 Correct unsimplified answer
M1 Attempt to factorise
A1 Obtain at least factor of n
A1 Obtain correct answer
(i) $5+12 \mathrm{i}$

13
67.4° or 1.18

B1B1 Correct real and imaginary parts
B1ft Correct modulus
B1ft 4 Correct argument
(ii)

M1 Multiply by conjugate
A1 Obtain correct numerator
$-\frac{11}{85}-\frac{27}{85} \mathrm{i}$
A1 3 Obtain correct denominator
7

5
(a) $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$

B1B12 Each column correct
SC B2 use correct matrix from MF1 Can be trig form
(b) (i)

B1B12 Stretch, in x-direction sf 5
(ii)

B1B12 Rotation, 60° clockwise
6
$6 \quad$ (i) $\quad \begin{aligned} & \text { (a) } \\ & \text { (b) }\end{aligned}$
B1B12 Circle centre (3, -4), through origin
B1B12 Vertical line, clearly $x=3$
\qquad
(ii)

B1ft Inside their circle
B1ft 2 And to right of their line, if vertical

7

> Either
> $\alpha+\beta=-2 k \quad \alpha \beta=k$
$y^{2}-4 k y+4 k=0$

Or
$\alpha+\beta=-2 k$
$\frac{-2 k}{\alpha}$
$y=\frac{-2 k}{x}$
$y^{2}-4 k y+4 k=0$

Or

$$
\begin{aligned}
& -k \pm \sqrt{k^{2}-k} \\
& \frac{\alpha+\beta}{\alpha}=\frac{2 k}{k+\sqrt{k^{2}-k}}, \frac{\alpha+\beta}{\beta}=\frac{2 k}{k-\sqrt{k^{2}-k}}
\end{aligned}
$$

$$
y^{2}-4 k y+4 k=0
$$

B1B1 State or use correct results
M1 Attempt to find sum of new roots
A1 Obtain $4 k$
M1 Attempt to find product of new roots
A1 Obtain $4 k$
B1ft 7 Correct quadratic equation a.e.f.

B1 State or use correct result
B1 State or imply form of new roots
B1 State correct substitution
M1 Rearrange and substitute for x
A1 Correct unsimplified equation
M1 Attempt to clear fractions
A1 Correct quadratic equation a.e.f.

B1 Find roots of original equation
B1 Express both new roots in terms of k

M1 Attempt to find sum of new roots
A1 Obtain $4 k$
M1 Attempt to find product of new roots
A1 Obtain $4 k$
B1ft Correct quadratic equation a.e.f.
M1 Attempt to rationalise denominator or cross multiply
A1 2 Obtain given answer correctly
(ii)

M1 Express terms as differences using (i)
M1 Attempt this for at least $1^{\text {st }}$ three terms
A1 $\quad 1^{\text {st }}$ three terms all correct
A1 Last two terms all correct
$\frac{1}{2}(\sqrt{n+2}+\sqrt{n+1}-\sqrt{2}-1)$
M1 Show pairs cancelling
A1 6 Obtain correct answer, in terms of n
(iii)
B1 $\mathbf{1}$ Sensible statement for divergence
9

9 (i)

$$
\operatorname{det} \mathbf{A}=a^{2}-a
$$

M1 Show correct expansion process for 3×3
M1 Correct evaluation of any 2×2
A1 3 Obtain correct answer
(ii) (a)

M1 Find a pair of inconsistent equations
(b)
(c)

M1 Find a repeated equation
A1 State non unique solutions
B1 State that $\operatorname{det} \mathbf{A}$ is non-zero or find correct solution
B1 6 State unique solution
SC if detA incorrect, can score 2 marks
for correct deduction of a unique 9 solution, but only once
$10 \quad$ (i)

$$
\begin{aligned}
& x^{2}-y^{2}=3 \quad x y=2 \\
& z=2+\mathrm{i}
\end{aligned}
$$

M1 Attempt to equate real and imaginary parts
A1 Obtain both results
M1 Eliminate to obtain quadratic in x^{2} or y^{2}
M1 \quad Solve to obtain x or y value
A1 5 Obtain correct answer as a complex no.
(ii)

B1 1 Obtain given answer correctly
(iii)

$$
w^{3}=2 \pm 11 \mathrm{i}
$$

$w=2-\mathrm{i}$

M1 Attempt to solve quadratic equation
A1 Obtain correct answers
M1 Choose negative sign
M1 Relate required value to conjugate of (i)
A1 5 Obtain correct answer 11

